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ABSTRACT

Recent advances in target sound extraction (TSE) utilize directional
clues derived from direction of arrival (DoA), which represent an
inherent spatial property of sound available in any acoustic scene.
However, previous DoA-based methods rely on hand-crafted fea-
tures or discrete encodings, which lose fine-grained spatial informa-
tion and limit adaptability. We propose SoundCompass, an effective
directional clue integration framework centered on a Spectral Pair-
wise INteraction (SPIN) module that captures cross-channel spatial
correlations in the complex spectrogram domain to preserve full spa-
tial information in multichannel signals. The input feature expressed
in terms of spatial correlations is fused with a DoA clue represented
as spherical harmonics (SH) encoding. The fusion is carried out
across overlapping frequency subbands, inheriting the benefits re-
ported in the previous band-split architectures. We also incorpo-
rate the iterative refinement strategy, chain-of-inference (CoI), in the
TSE framework, which recursively fuses DoA with sound event ac-
tivation estimated from the previous inference stage. Experiments
demonstrate that SoundCompass, combining SPIN, SH embedding,
and CoI, robustly extracts target sources across diverse signal classes
and spatial configurations.

Index Terms— directional clue, target sound extraction, spec-
tral pairwise interaction, spherical harmonics, iterative refinement.

1. INTRODUCTION

Target sound extraction (TSE) [1] refers to the task of selectively
extracting a target audio source from a complex acoustic scene. TSE
has gained increasing attention due to its wide range of practical
applications in hearing aids [2], augmented/virtual reality (AR/VR)
[3], and teleconferencing [4]. In these scenarios, isolating a desired
source from interfering signals and background noise is critical for
both human perception and machine-based recognition.

Recent studies have investigated TSE using auxiliary clues
that guide the model toward the target source, particularly in deep
learning-based frameworks. Illustrative auxiliary clues encompass
class labels [5, 6], text descriptions [7, 8], visual cues [9], or their
combinations [10]. In addition to these, the direction of arrival
(DoA) has been utilized as a notable clue that leverages the spatial
characteristic to isolate a target from interfering sources, irrespective
of temporal or spectral attributes.

The effective use of DoA clues hinges not only on selecting in-
put features that describe the spatial aspects of multichannel signals
but also on the clue-fusion architecture in which DoA clues are artic-
ulated and integrated with these input features. With respect to input

∗Corresponding author.

features, prior work [11, 12] has focused on manually designed fea-
tures such as inter-channel phase differences (IPD) or inter-channel
level differences (ILD), which improve TSE performance compared
to using raw waveforms or complex spectrogram input. Neverthe-
less, they might lose essential spatial information, and whether such
features are the optimal choice for capturing spatial relationships re-
mains an unresolved issue.

Beyond the choice of input features, prior studies have also
differed in how DoA clues are represented and fused with these
features. Some studies [11–13] used IPD and target phase difference
(TPD) computed from target DoA and known microphone positions.
Other approaches [14–16] adopted one-hot or binary encodings,
which ignore the continuous and periodic nature of angular space by
treating adjacent directions as independent categories, leading to in-
creased input dimensionality and hindering generalization to unseen
or intermediate directions. In these approaches, DoA clues were
combined with input features through operations such as multiplica-
tion [14], initial recurrent states [15], or attention keys/values [16].
More recently, M2M-TSE [17] and DSENet [18] employed cyclic
positional (cyc-pos) embeddings that explicitly capture the peri-
odic structure of angular space. M2M-TSE further applied them by
broadcasting across time only when the target is active and mul-
tiplying them with input features. Since the exact duration of the
target activity is generally unknown, this approach needs to handle
temporal uncertainty when incorporating directional clues.

To address these limitations, we propose SoundCompass, a
framework for more effective directional clue integration. The key
contributions of the proposed framework are as follows:

Spectral Pairwise INteraction (SPIN) input feature. To build a
general input feature capturing rich spatial information, we propose
a Spectral Pairwise INteraction (SPIN) module that captures all pair-
wise interactions between sinusoidal components on complex spec-
trogram of multichannel signals. SPIN features are then fused with a
DoA clue in overlapping frequency subbands to capture frequency-
dependent spatial cues, extending the advantages of prior band-split
approaches [19–22].

Spherical harmonics (SH) embedding for DoA clues. We employ
spherical harmonics (SH) as the DoA clue embedding, which pro-
vides a continuous angular representation across the 2D sphere. The
SH embedding enables the model to handle any DoA value without
discretization.

Iterative refinement with temporal clue. Furthermore, we adopt
an iterative refinement strategy inspired by the chain-of-inference
(CoI) paradigm [23–25], where the estimated temporal activation is
recursively fused with the DoA clue to the subsequent stage, en-
abling the model to improve separation quality under challenging
multi-source conditions progressively.
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Fig. 1. (a) Overall architecture of SoundCompass for DoA-based target sound extraction and (b) details of a fusion module including a
Spectral Pairwise INteraction (SPIN) module and integrating directional clue by feature-wise linear modulation (FiLM) for K subbands.

2. SOUNDCOMPASS FRAMEWORK

2.1. Model Architecture

Our proposed model is based on DeepASA [25] backbone, which
achieved state-of-the-art performance in universal source separation
(USS) and sound event localization and detection (SELD) on their
benchmarks. The architecture sequentially applies multi-head self-
attention and Mamba feedforward networks along spectral and tem-
poral dimensions separately to capture object-level features from
mixtures. The original backbone separates object features without
any clue, and our focus here is how to effectively guide the object
separation process using a DoA clue.

The overall architecture for achieving this objective is illustrated
in Fig. 1(a), excluding the batch dimension. A multichannel mixture
is first transformed into a complex spectrogram of shape 2M×T×F
using the short-time Fourier transform (STFT), where M , T , and
F denote the number of microphones, time frames, and frequency
bins, respectively. Instead of a fixed window, a learnable Gaussian
window parameterized by adaptive mean and standard deviation is
applied, allowing each frame to be spectralized from different tem-
poral focus and spread. The spectrogram is then mapped into a fea-
ture space, increasing the channel dimension from 2M to D through
a 2D convolutional encoder (kernel size 3 and stride 1) that extracts
spatial cues and local spectral–temporal patterns. The resulting fea-
ture is modulated by a fusion module to align extracted features with
the directional clue, as described in section 2.2. Subsequently, fused
features are processed by feature aggregation (FA) blocks that ana-
lyze spectral and temporal dependencies and separate features corre-
sponding to the directional clue. Finally, two audio decoders recon-
struct the multichannel direct sound and reverberation separately by
reducing the channel dimension from D back to 2M using 2D con-
volutional layers of kernel size 3 and stride 1, followed by an inverse
STFT (iSTFT) to recover the target waveform.

2.2. Directional Clue Integration

Spectral Pairwise INteraction (SPIN). The fusion module takes
the complex spectrogram and directional clues to generate the spa-
tial feature mask that guides the DeepASA system to the target di-
rection. To aid in extracting spatial details from the complex spec-
trogram, we present a Spectral Pairwise INteraction (SPIN) module.
Within this module, the cosine and sine components derived from the
phase of each multichannel complex STFT are multiplied pairwise
across channels, yielding a channel dimension of (2M)2. This mul-
tiplication enhances the recognition of inter-channel phase or time
differences, as well as level differences when necessary. The sinu-
soidal products, confined within a range of ±1, ensure stable learn-
ing dynamics during training. Given that inter-channel relationships
often vary by frequency, we adopt a band-split strategy [19–22] to
ensure that inter-channel features are developed and merged with
directional clues in each frequency band. Specifically, we employ
overlapping subbands based on the 12-TET Western musical scale
[20,22], using K = 31 subbands, with narrower bandwidths at lower
frequencies and wider bandwidths at higher frequencies. This ap-
proach promotes continuity across overlapping frequencies and min-
imizes information loss at subband boundaries.
Spherical harmonics (SH) embedding. As an accurate and con-
tinuous representation of the DoA clue (θ, ϕ), we employ spherical
harmonics (SH) [26] as embeddings, as depicted in Fig. 1(b). Un-
like one-hot embeddings, SH embeddings allow for the representa-
tion of angles without the need for discretization. Additionally, in
contrast to cyc-pos embeddings, which define azimuth and elevation
angles separately, SH embeddings can describe the position on an
S2 sphere without coordinate separation, thus providing a consis-
tent representation regardless of coordinate rotation. The complex
spherical harmonics of order n and degree m are defined as

Y m
n (θ, ϕ) =

√
(2n+ 1)

4π

(n−m)!

(n+m)!
Pm
n (cos θ)eimϕ, (1)



where Pm
n (·) denotes associated Legendre functions. We use up to

the 5-th order encoding by stacking the real and imaginary compo-
nents of spherical harmonics, yielding an embedding vector of di-
mension 2(N + 1)2 for N = 5.
Fusion in subbands. The encoded SH vector is fused with the out-
put from the SPIN module in each subband. The clue encoding mod-
ule is a FiLM [27] layer generating scale (γ) and shift (β) parameters
for feature modulation, combined with a residual connection from
the feature encoding module. This design enables fine-grained spa-
tial conditioning without hand-crafted feature engineering. Each en-
coding and decoding block consists of a linear layer, adaptive layer
normalization (AdaNorm) [28], and a parametric rectified linear unit
(PReLU) activation.
Iterative refinement. To enhance robustness, we incorporate a
sound event detection (SED) decoder following the on/off decoder
structure of DeepASA [25]. This module outputs a frame-wise
binary sequence that indicates the presence of the target source at
each time step. As illustrated in Fig. 2, this sequence is combined
with the SH embedding to form a time-varying directional clue of
shape T ′ × 2(N + 1)2, where T ′ denotes the sequence length of
the SED decoder output. The clue is then linearly interpolated to T
in the time dimension and recursively injected into subsequent TSE
stages. This chain-of-inference (CoI) strategy enables the model
to iteratively refine its extraction by aligning directional informa-
tion with temporal dynamics. During training, the already trained
first-stage model is kept fixed, and only the subsequent stage is fine-
tuned from the first-stage model using oracle time-varying clues
while fixing its encoder and fusion module. This fine-tuned stage
then functions as the subsequent stage. At evaluation, the complete
pipeline is used: the output of the first-stage model is combined with
the SH embedding and fed into the subsequent stage, which relies
on SED predictions from the previous stage to progressively refine
the separation of the target source.

2.3. Loss Functions

A linear combination of signal-to-noise ratio (SNR) and scale-
invariant signal-to-noise ratio (SI-SNR) [29] loss with a ratio of 9:1
was used for the direct/reverb audio decoder and the sum of outputs
from the decoders. Additionally, binary cross-entropy loss was em-
ployed for the SED decoder to estimate the temporal activation of
the target source. All terms were summed with identical weights.

3. EXPERIMENT AND ANALYSIS

3.1. Datasets

The proposed architecture was trained and evaluated on the Auditory
Scene Analysis V2 (ASA2) dataset1 [25], which contains 13 audio
classes with 2–5 foreground sources and one background noise per
mixture. However, to align with our direction-based TSE model, we
regenerated the dataset with stationary sources using the gpuRIR li-
brary2 [30], fixing each source at its initial position. Each mixture is
4 seconds long, sampled at 16 kHz, and recorded with a 4-channel
tetrahedral microphone array of 4.2 cm radius centered in a cuboid
room. The other configurations, including initial source positions
and room reflections, follow those of the ASA2 dataset configura-
tion. The resultant training, validation, and test sets comprise 50k,
2k, and 2k mixtures, respectively.

1https://huggingface.co/datasets/donghoney22/
ASA2_dataset

2https://github.com/DavidDiazGuerra/gpuRIR

Fig. 2. Details of iterative refinement.

3.2. Training Setups and Evaluation Metrics

All training configurations largely followed [25], with several modi-
fications. Optimization was performed using AdamW with an initial
learning rate of 0.0005, which was reduced by a factor of 0.1 if the
validation loss did not decrease for five consecutive epochs. Gra-
dient norm clipping was applied with a threshold of 5, and training
was conducted for 100 epochs with a batch size of 2 on four GeForce
RTX 4090 GPUs.

The extraction performance was evaluated using SNR and SI-
SNR improvements over the mixture. To further examine the spatial
fidelity of multichannel extraction, the consistency of inter-channel
cues was assessed by computing the mean absolute error (MAE)
between estimation and ground truth, including ∆ILD, ∆IPD, and
∆ITD across all microphone pairs. The ITD is derived using the
generalized cross-correlation phase transform (GCC-PHAT)3 [5].
All the above metrics were computed for each source in each mix-
ture and then averaged. In addition, the model complexity was
evaluated in terms of the number of trainable parameters (Param.)
and total multiplications and additions (Mult-Adds)4.

3.3. Analysis of Results

Table 1 presents comparisons to other TSE systems, as well as ab-
lation studies of the proposed SoundCompass framework. First, the
vanilla DeepASA model [25], representing universal source sepa-
ration (USS) without any injected clue, achieves an SNRi of 15.6
dB and SI-SNRi of 13.0 dB. This unguided separation provides a
baseline for evaluating the benefit of direction-aware extraction. To
evaluate the benefit of DoA clue injection, we compared early and
late fusion strategies. Injecting DoA clues before feature aggrega-
tion (FA) blocks using the fusion module consistently improves per-
formance over late integration (after FA). This confirms the impor-
tance of exploiting spatial cues at early stages to achieve better target
sound extraction and spatial fidelity.

We then compared SoundCompass with recent DoA-based
single-channel TSE baselines, SSDQ5 [12] and DSENet6 [18]. For
fair evaluation, we adapted their designs to match our setup of using
one DoA clue: a point spatial query directing a point (θ, ϕ) instead
of a region query for SSDQ and extended cyc-pos embedding to el-
evation as well as azimuth without beamwidth control for DSENet,
following their training configurations. SSDQ, which relies on
hand-crafted features, performs poorly in multi-source mixtures,
while DSENet shows noticeable improvements but still falls short of
SoundCompass. Notably, our method achieves higher SNR metrics

3https://github.com/vb000/SemanticHearing
4https://github.com/TylerYep/torchinfo
5https://github.com/zhuxj821/SSDQ
6https://github.com/jingkangqi/DSENet

https://huggingface.co/datasets/donghoney22/ASA2_dataset
https://huggingface.co/datasets/donghoney22/ASA2_dataset
https://github.com/DavidDiazGuerra/gpuRIR
https://github.com/vb000/SemanticHearing
https://github.com/TylerYep/torchinfo
https://github.com/zhuxj821/SSDQ
https://github.com/jingkangqi/DSENet


Table 1. Performance comparisons across models and structural variations of the proposed methods.

Model SNR Metrics ↑ Spatial Errors ↓ Complexities ↓
SNRi (dB) SI-SNRi (dB) ∆ILD (dB) ∆IPD (rad) ∆ITD (µs) Param. Mult-Adds

Universal source separation
DeepASA [25] 15.636 12.976 0.261 0.896 44.829 5.46 M 74.85 G

Target sound extraction
SSDQ (w. point spatial query) [12] 5.949 -1.171 - - - 3.91 M 21.22 G
DSENet (w. cyc-pos (θ, ϕ)) [18] 16.419 16.025 - - - 4.88 M 86.89 G

Proposed (DoA after FA) 15.977 14.508 0.146 0.825 25.443 2.70 M 20.49 G
Proposed (DoA before FA) 17.865 16.717 0.099 0.805 10.302 2.70 M 20.49 G

remove an interaction in SPIN 5.663 15.854 0.115 0.821 11.765 2.59 M 20.49 G
replace SH to cyc-pos (θ, ϕ) 17.696 16.538 0.100 0.782 12.747 2.70 M 20.49 G
remove a band-split structure 17.524 16.238 0.104 0.808 14.513 2.16 M 20.49 G
add an SED decoder 17.884 16.780 0.098 0.800 9.993 4.09 M 23.46 G

refine iteratively (×2) 18.196 17.079 0.093 0.789 9.714 +3.48 M +24.01 G

Fig. 3. The t-SNE trajectories of the FiLM scale (γ) parameters
across three subbands, with respect to azimuth (top, for 5 fixed ele-
vations) and elevation (bottom, for 5 fixed azimuths).

while maintaining lower computational complexity, indicating both
effectiveness and efficiency.

Ablation studies further highlight the contribution of each com-
ponent. Removing pairwise interactions in the SPIN module (i.e.,
using only the raw 2M cosine and sine components without multi-
plication) causes a substantial degradation, highlighting the impor-
tance of cross-channel correlation modeling. Replacing spherical
harmonics (SH) with cyc-pos embeddings slightly degrades perfor-
mance, while eliminating the band-split structure also reduces ac-
curacy, underscoring the importance of frequency-dependent spatial
cues. Incorporating an SED decoder shows modest improvements,
while iterative refinement further boosts performance, demonstrat-
ing the advantage of progressively refining activations at the cost of
additional parameters.

To better understand how the directional clue is embedded,
Fig. 3 visualizes the t-SNE trajectories of the FiLM scale (γ) pa-
rameters from the clue encoding module across three subbands.
For 5 fixed elevations, we projected the scale parameters across
azimuths into the same feature space using t-SNE; the same proce-
dure was applied to visualize variations across elevations for 5 fixed
azimuths. Azimuthal variations form near-circular manifolds that
remain distinct across elevations, indicating that angular periodicity
is preserved. In contrast, elevation trajectories evolve from 0◦ to

Fig. 4. An example of SI-SNRi contour maps within ±15◦ from
each target direction marked as “X” in a cuboid room of size [width,
length, height] = [5.57, 5.20, 3.79] m with an RT60 of 0.32 s.

180◦ and converge to similar points across azimuths, reflecting the
continuous nature of vertical cues. In addition, the different geomet-
ric patterns across subbands suggest that frequency-specific spatial
correlations are captured, highlighting the benefit of band-split
modulation.

Fig. 4 illustrates SI-SNRi sensitivity to deviations in directional
clues. The contour maps show that performance peaks near the true
source directions and degrades as the DoA estimate deviates by up
to ±15◦. Circular regions of high SI-SNRi form around each target
position, demonstrating that SoundCompass framework effectively
leverages directional guidance. Smaller regions indicate strong di-
rection sensitivity, while broader regions suggest tolerance to some
angular mismatch. This trade-off highlights the practical robustness
of the proposed framework, as small DoA deviations are inevitable
in real-world scenarios. The audio demo is available at https:
//choishio.github.io/demo-SoundCompass/.

4. CONCLUSION

We proposed SoundCompass, a DoA-based TSE framework that in-
tegrates spherical harmonics embedding with spectral pairwise inter-
action for efficient spatial conditioning. Through overlapping band-
split modulation and sound event activation estimation, the model
effectively captures both frequency-dependent and time-varying spa-
tial cues with low complexity. Furthermore, the iterative refinement
strategy highlights the advantage of coupling DoA clues with tem-
poral dynamics, enabling a more robust extraction in diverse con-
ditions. These results suggest promising directions toward more
flexible source manipulation, such as handling dynamically moving
sources by jointly estimating their time-varying DoA and activity.

https://choishio.github.io/demo-SoundCompass/
https://choishio.github.io/demo-SoundCompass/
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